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In the present paper the analytic techniquee based on the use of the Rodrl- 
ues-Ramiltoa and Cayley-Klein parameters are brought to bear on the applied 

t preoeasional) theory of gyroscopes. The kSnematic8 of a single-rotor gyro- 
pendulum [l] and of a Ceckeler-Ishlinukli horizontal gyrocompass 12) are 
considered, a8 also are the dynamic equations of the precessional motion of 
a gyropendulum within finite angles. 

The motion of a single-rotor gyropendulum will be considered relative 
to i’trihedron O$pp with right-handed coord%nates and with origin at the 
center of gimbals, oriented along the velocity vector of the point of auspen- 
sion El and 23. 

We ahall also introduce the R&al trinedron Oxpa with origin at the same 
point 0 , which doea not participate In the neutral rotation of the gyro- 
scope. 

The transfer from the trlhedron 0x0 $x0 to the trihedron 0xy1 is 
effected by mean8 of two suocessive finite rotatione through the angles a 
and g of the outer and inner rings, respectively*. 

The direction COLttiE between the axes of the trlhedra which we have 
lntroduaed, form the matrix e = 11 ujkI( (i, k = 1, 2, 3), defined by the Table: 

I 20 I 
2 a11 = co.3 p au=sinasinp @IS =-cosasin@ 

Y oa1 = 0 ues=cosa as=sina 
2 uSI = sin 8 ~3% = -sin a co9 p a~=cosacosP 

Let A, (e I 0, 1, 2, 3) be the Rodrlgues-Hamilton parameters relative to 
the vector of finite rotation 2 whloh take8 the system Sl#Jno into wva. 

The expressions for the direction coe%nes a,* 
X, will have the form 

in terme of the parameters 

*) See PQ.9 of 113. There these angles were denoted, respectively,by g 
and t . 
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a11 = a02 + a12 - a22 - aa2, a12 = 2(hoh3 + h&2), a13 = 2 (hlh3 - hoh2) (1.1) 

u21= 2(I.lh2--M3), a22 = h,,'+ h2Z-k32--h12, a23 = 2(h&+ h2h3) 

a31= 2 &oh2 + hshx), a32 =2(h2h3--Ohl), a33 = ho2 + h32 - Al2 - h22 

The connection between the angles c 
established by Formulae 133 

and B and the parameter6 X are 

11.2) 
lo= COS112~COs112P~ 

. 
Ai =sin'/zU COS1/2p, h2 = co~1/~asinl/~ p, h3 = sin I/? 3sin l/z 3 

The relations 

sin a = 2 (A& + A.&), 

follow from (1.2) also. 

sin fi = 2 (AC&, + A,&) (1.3) 

2. Let pt q, P 
;;gon wuz 

be the Projectiona of the angular velocity of the tri- 
connected to the Inner ring (casing) onto its own axes. we 

V 
(2.1) 

p = u'an+ R a12 + r"a13, 
V 

Q = P' + R a22+ rOa2.3, r = a'a31+ -----~3~ $ rnuD It 
Here v la the velocity of the point of auspenalon, r” Is the projection 

onto the x0-Bxia of the angular velocity of the trlhedron flyOsO . 
The expreaalons for p , 

derivatives have the form [3 s 
, r In terms of the parameters X, and their 

p=2 [hOhi'-k&o'+ h3l2'-k2h3'+ q"(hOh3-+ klh2)$ r"(hlk3- h&2)] (f= v/R) 

4 = 2[hOh2'-?b2ho' + hl?b3'- k3hl'$1/2q0(h32f h22- h32- ha)+ r"(hOhl f k2k3)] (2.2) 

r =2 [hOh3'-khah~'+ h2hl'- h&2'+ q"(h2h3- hOk)+1/2r"(h02 + h32-kla-k¶2)] 

The parameters A, are related by Equation 

&a i- hi2 + hz2 + If = 1 

from which follows the differential relation 

(2.3) 

hoho’ + h&l + Rz& + hshs' = 0 (2.4) 

From (2.2) and (2.4) It la easy to obtain the Rodrlguea-Hamilton equations 
for the derivatives of A , generalized to the case of a moving base. The 
latter form a system of &ear dlfferentlal equatlone having the form (2.5) 

2h,’ = - ph, - (q - q”) h, - (r - r”) h3, 2X; = ph, -I- (r + P) a2 - (q + q”) lb3 

21L,’ = (Q - 90) a0 + pa, - (r + r’) a,, 2a; =r (1. - r”) a, + (4 + $7 al - PL 

The classical Rodrlgues-Hamilton equations (for a fixed base) are obtained 
from (2.5) by letting q”= r”- 0 In them. 

3. Let us consider here the kinematics of the motion of the Sensing ele- 
ment (gyrosphere) of a two-rotor horizontal gyrocomPaaS c21. 

Let O,?y~~o be a trlhedron with right-handed coordinates, oriented, aa 
In the gyropendulum case, along the velocity vector of the point of SusPen- 
slon. 

Let ua also Introduce a moving trlhedron Oxva connected to the gyro- 
sphere & obtained from 09 fla” by a sequence of three finite rotatlona 
through the angles a , S , y . 

In this case the expressions for the direction coslnes will have the form 

alI = ~0s Q; cos r - sin a sin p sin r, aI2 = sin u cos 7 + cos a sin /3 sin 7 

a13=-~~~p~o~~, as=--sinucosp, an=cosucosP, a23=sinp (3.1) 

a31 = c0s a sin r + sin a sin 3 C0s 7, a92=sinasinr-cosusin~cos~, Cl33 = cosp COST 
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Comparing (1.1) (these formulas, of course, retain their own structure) 
with (3.1), we can convince ourselves of the validity of Formulas (3.2) 

2 @ohs - Alh2) 2 (hoXa - hlb) 

una= ~02+~22_~s2_~h12’ sin j3 = 2 (h& + h&3), ~r==~+a_~+~a4 

It Is somewhat complicated to establish the exxpresalons for the Rodrlgues- 
Hamilton parameters In terms of functions of the angles a , e , y . The 
transfer from the system p 

f 
80 

three successive finite rota Ions 
to the system X~X la determlned by the _ 

03 = 2e3 q2 T (3.3) 

Here, the unit vector a, give8 the direction of the axe6 around which 
the sequence of rotations through the anglea c , 6 , y are accomplished. 

In order to obtain expreealons for X, in-terms of functions of the angles 
a , R , y, we can apply to (3.3) twice the procedure of adding on finite 
rotatlone. However, It la simpler to make use of the Lur’e theorem on the 
tranaposltlon of finite rotations. According to this theorem the sequence 
of rotations e1 and e D la equivalent to the series 

&’ = ez = 2etul’/2 p, e;=2el’tM’/za (3.4) 

Here et’ Is the unit vector to which a1 tranefers under rotation @a= 
Therefore, denoting by A,’ the Rodrlgues parameters correapondlng to the 

resultant rotation 9 and by v and y (8 = 0, 1, 2, 3) the parameters 
of the component rotaklona, accord’& to the theorem on tranaposed ro%atlons 
we set 

v0 = cos l/a p, vl = sin 112 p, vp = v3 = 0 (3.5) 

/.Lo = cos ‘/2 a, Jk1= p2 = 0, p3 = sin l/2 a 

For 1, t we have Formulas 

ho’ = VOPO - 5 V#g* 
S=a r=11=1 

Here Erts la the Levi-Clvlta symbol [33. Hence It follows that 

ho’ = cm l/2 a cos 72 P, AI’ = cos l/2 a sin l/2 p 
ha’ = sin I/Z a sin 1/2 p h3’ = sin l/a a cos I/Z fi 

(3.6) 

(3.7) 
Further, we should consider the sequence of rotation8 

making use of the theorem of transposed rotations. 
4, and R, by again 

In this case we should right away set 

V@ = co.5 l12y, -91 = 0, Y, = sin 1/a?, v3 = 0, P. = &? (3.8) 

knotlng the desired Rodrl 
the formulas of structure (3. Y 

ea-Hamilton Parameters by 1, and again uelng 
), we obtain 

b = ~0s It2 u cos l/2 p cos ‘la 7 - sin l/2 a sin l/2 P sin l/2 r 

h, = cos If2 a sin Ij2 a cas l/a r - sin l/2 a co3 I/S P sin l/2 y (3.9) 

h2 = cos lj2 a cos lJa p sin l/a 7 + sin ‘18 a sin l/a P cos l/a r 
hs = sin l/a a cos l/2 p cos l/2 r + cos ‘12 a sin ‘12 P sin Y2 7 

The generalized Rodrlgues-Hamilton equations for the horizontal gyrocom- 
pass may be obtained from (2.5) by setting p - 0 in *hem c27. We have 

2ho’ = - (q - qO) h2 - (r - rO) h3, 2hl’ = 0. + q At - (!7 + P) b 

2&a’ = (q - qO) ho - (r + rO) hl, 2h3’ = (r - rO) ho + (q + .f) Xl 

(4 1O) 

’ * 
Here 

q = q”a2a + (rO + a’) @3 + r’, r = q”uQ2 + (r’ + a’) 0~ + p’ sin 7 (3.11) 

and, further, the clr are expressed by FormuIaa (3.1). 

4. The application of the Rodrlguea-Hamllton parameters to the dynamic 
problems of the applied theory of gyroscopes, of course, meet8 with great 
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difflcultles ln comparison with the purely kinematic aspects presented ln 
Sections 1 to 3. 

However, here too It Is possible In certain cases to simplify the analytic 
aspects of the problem by means of a transfer from the Euler-R&al angles to 
the R drlgues-Hamilton parameters, by which we can arrive at linear dlffer- 
entlal equations without a preliminary linearization of the original equa- 
tions. 

AS an example which will clarify this concept, let us consider the equa- 
tions of precessional motion of a single-rotor gyropendulum set on a fixed 
base. Relative to the R&al axes these equations have the form [l] 

Hq = M,, - Hp = M, (4.1) 

where, taking (2.1) Into account, we should assume 

p = a’ cos p, q = P’, M, = - PI sin a, M,=-PlcosasinP (4.2) 

Here, as before, c and S are the angles of rotation of the outer and 
Inner rings, pl Is the pendulum moment, F Is the natural kinetic moment 
of the gyroscope, which we shall take to be constant. It Is well-known [l] 
that the structure of Equations (4.1) Is preserved also for an arbitrary trl- 
hedron OX* *_-* with origin at the center of the gimbals, where the z+-axis 
coincides w th the ~-axis of the thrlhedron Oxyz . Y 

Let us Introduce the trlhedron Ox*p*a* connected to the rotor, formed by 
a rotation, of the trlhedron OX s 
The position of the rotor will f 

around the z-axis through an angle y . 
hus be determined by the angles c , ,q , y . 

The Rodrigues-Hamilton parameters corresponding to the sequence of three 
rotations through the angles c , fl , y , transferring the system O;cOflp" 
to ox+y*.z*, are determined by Formulas 

ho = cosljz I cos 1/Z a cosl/z p - sin l/2 7 sin112 3 sin112 p 
hi = COS~/~ 7 sin iI2 a cos l/z p + sinI/2 r cos1/2 a sin112 R (4.3) 
ha = cosl/a y cos1/2 a sin'/2 p - sin'/2 r sin '12 a cos1/2 3 
hs = sin'/2 r cos ljz a cos '1.2 j3 + cos 1/2r sin'/2 a sin'/2 p 

obtained analogously as in Section 3 for the horizontal gyrocompass. 

The equations of precessional motion relative to the axes x*y*z* have 
the form 

Hq* =Mr*, - ZZp* = M,. (4.4) 

where we should take 

p* = p cos r + q sin T, q* = -psiny+qcosT 

M,, = M, cos y + Mv sin 7, M,, = - M,siny+McosT (4.5) 

Equations (4.4) in the variables X, determlned from Formulas (4.3) have 
the form 

?LOk'-- ?&o'+ hs'hz'-~2h3'+o(hlhs--ohz) = 0 

hOhz'-- h2ho'+ h&3'--h3hl'-}- w(hOhl+ h2h3)= 0 
(u = $) (4.6) 

Equations (2.4) should be combined with Equations (4.6). The fourth equa- 
tlon can be obtained with the help of the Integral of the energy, which ln 
the given case has the form [5] 

g+ PlcosacosP=hl (4.7) 

where c 1s the polar moment of Inertia of the rotor, while the quantity 

I$ E Cr* = C(r' -i_ a'sin p) = IL2 (4.8) 

determines the cyclic integral In the steady-state rotation of the gyroscope. 

From (4.7) and (4.8) follows the validity of the exPressIon 

r*+Gcosacosp=h (h= const) (4.9) 

In the variables A, Equation (4.9) wlII be 
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ho&- - hsho’ + hl’?vz - h3’hl + l/a (Apa + ha2 - Al2 - h22) = l/2h (4.10) 

$olvlng EqW&XiS (4.6), (2.4) and (4.10) with respect to the derivatives 
of the Rodrlgues-Hamilton parameters, we obtain four linear differential 
equations with constant soefflclents, which can be split up into two lndepen- 
dent systems of the form 

2ho’ = (0 - h) h3, 2hl’ = (0 + h) I.2 
2h.s’ = - (w - h) LJ, 2ha’ = - (0 + b) hl 

(4.11) 

Here, by virtue of (4.9), with due regard to the Initial conditions we 
should set 

o-h=~--'(0)--'(0)sinp(I))-~cosor(o)cosP(o) (4.12) 

o+h=~+7'(0)+cc'(0)sinB(0)+~cosa(0)cosp(o) 

Equations (4.11) can be still further sl~llfled If we pass to the Cayleg- 
Klein parameters by setting 

h, + ih, = lli, h, + ih, = u2 (4.13j 
Relative to the Cayley-Klein parameters ux and up we get Equations 

Ul 
*_ 
- - (0 - h) iu,, ua* = - (0 + h) iu, (i = 1/J) (4.14) 

Equations (4.11) (or (4.14)) are Integrated to give the solution of the 
problem. 

5. In 1,lnear cases the equations we have obtained admit of an easy degen- 
eration. 

For small angles O. and R , as X, we can take the expressions 
(5.1) 

ho = COS~/~~, I.1 = Q(u cosl/2~ + P sin1/2y), h2 = l/2(/3 cosl/a~ - a sin1/2r), hs = sinl/ar 

Further, from (4.8) by neglecting terms of the second order of smallness, 
we obtain 

T = y' = y' (0) = const (5.2), 

Under these conditions the first two of Equations (4.11) become Identities; 
from the other two we obtain equations of the form 

a' c.os.Os'/ay + r sinl/zy = (H/Ii) (p COS’/aT - zsin'/aT) 
(5.3) 

-u'sinQr + p' cos1/2r = -((Pl/H)(a Cos'/aT + P sin %r) 

whence ensue the equations of small oscillations of a gyroscoplc pendulum 

HP' = - Pla, Hu’ = Pip (5.4) 

which, of course, are directly obtainable after a linearization of system(4.1). 

In conclusion we note that by virtue of the arbitrariness of the choice 
of the system of coordinates Ox+y*z* with origin at the center of suspension 
and with the z *-axis coincident with the t-axis of the R&al trlhedron, the 
motion of the system along the coordinate y can be chosen so as to satisfy 
the condition h - 0. This circumstance simplifies matters still further. 

The author sincerely thanks C.D.Bllumln, Iu.K.Ehbanov and D.M.Kllmov for 
reviewing the paper and for valuable remarks. 

BIBLIOCRAPRY 

1. Ishllnskll, A.Iu., K teorll 
of the gyroscoplc pendulum 7 

lroskoplcheskogo malatnlka (On the theory 
. PAM Vo1.21, Np 1, 1957. 

;I 

Ishllnskll, A.Iu., K teorll glrogorlzontkompasa 
horizontal gyrocompass). pMN Vo1.20, Ho 4, 

On the theory of the 
195 & . 

Lur'e, A.I., 
Cl961 

Analltlcheskala mewlan1k.a (Analytical Mechanlcs).Flzmatglz, 
Llashenko, V.F., Ob lntegrlrovanll uravnenll dvlzhenlla glroskoplcheskogo 
malatnlka v konechnykh uglakh (On the Integration of the equations of 
motion of a gyroscoplc pendulum within finite angles). Izv.Akad.Nauk 
SSSR, Mekhanlka 1 mashlnostroenle, HP 2, 1964. 

5. Chertkov, R.I., Metod Iakobl v dlnamlke tverdogo tela (The Methods of 
Jacobi In the Qnamlcs of a Solid Body). Sudpromglz, 1%. 

___-_*_I__ c__ ._ __ _ 


