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In the present paper the analytic techniques based on the use of the Rodri-
ues-Hamllton and Cayley-Klein parameters are brought to bear on the applied
precessional) theory of gyroscopes, The kinematics of a single-rotor gyro-

pendulum [1] and of a Geckeler-Ishlinskii horizontal gyrocompass [ 2] are

considered, as also are the dynamic equaiions of the precessional motion of

& gyropendulum within finite angles.

l. The motion of a single-rotor gyropendulum will be considered relative
to & trihedron (Ox°3f 2% with right-handed coordinates and with origin at the
center of gimbals, oriented along the veloclity vector of the point of suspen-
sion [1 and 2].

We shall also introduce the Résal trihedron Oxys with origin at the same
point 0 , which does not participate in the neutral rotation of the gyro-
scope.

The transfer from the trihedron 0x°;°s° to the trihedron Oxyz 1s
effected by means of two successive finite rotations through the angles o
and g of the outer and inner rings, respectively®.

The direction cosines between the axes of the trihedra which we have
introduced, form the matrix g = [la,|| (i, # =1, 2, 3), defined by the Table:

x° y° z°
z a1 = cos B mg =sina sin B a3 == —cos o 5in §
y an =10 gy =CoSQ dgs == sin &
z as = sin B as3 = —sina cos B ags == cos & cos B

Let A,{(se = 0, 1, 2, 3) be the Rodrigues-Hamilton parameters relative to
the vector of finite rotation 9§ which takes the system x03°2° 1into y».

The expressions for the direction cosines ¢ sx in terms of the parameters
A, will have the form

*) 8See Fig.9 of [1]. There these angles were denoted, respectively,by g
and y .
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ay = A.oz +— )\.12 bt A-gz - 7»32, aie = 2 (}\,07\.3 + 7\.1%.2), aiz = 2 (Mks - 7\.07\.2) ('11)
ag1 = 2 (MAz — Aoks), agy = ho? + Ae? — Aa2—M12, @3 = 2 (hohr + Asha)
ag == 2 0‘0}\'2 + )\37‘1); asgs =2 (}»27»3 ot Ko}q), azz = Ao + hg? — W2 — Ag?

The connection between the angles o and g and the parameters )\ are
established by Formulas [ 3] 1.2)
(1.

ho=cos?/pacosl/yB, A1 =sinYr0c081/aB8, Az==rcosl/pasinl/aP, As = sin /e asin /s’

The relations

sin @ = 2 (Aghy + Aghy), sin § = 2 (Rohy -+ AzAy) (1.3)
follow from (1.2) also.
2. Let p, g, r be the projections of the angular velocilty of the tri-
gedron xyz connected to the inmmer ring (casing) onto its own axes. We
ave
2.1
. v o . 4 v &b
p=dan+ 5 a1+ reap, g= + & o2+ rias, r:a'a31+—R—a32+r°a33
Here v 18 the veloclty of the point of suspension, »° is the projection
onto the g°-axis of the angular velocity of the trihedron x°yP2° .
The expressions for p , ; r 1in terms of the parameters 1\, and their
derivatives have the form [33
P =2[hod'— MAo" + Asha” — Ashs™ -+ ¢° (Roks + Aahe) + r° (Aahs — Aoka)] (¢° =v/R)
q = 2 [Aolz' — A.zlo' + kﬂ»s' — Ashi’ + 1/2 q° (7»02 -4 Ag? — Ag? — 7»12) + r° (107»1 -+ 7»27\18)] (2-2)
r =2 [hohs" — Asho  + Ashi’ — Aihg’ 4 ¢° (Aehs — Aoha) - Yo 7° (ho? 4 Ao — M2 — Ag?)]

The parameters ), are related by Equation

Ao - M2+ A2+ At =1 (2.3)
from which follows the differential relation
Aoho’ - M1’ - Aahe’ + Asha’ =0 (2.4)

From (2.2) and (2.4) 1t 1s easy to obtain the Rodrigues-Hamilton equations
for the derivatives of 1,, generalized to the case of a moving base. The
latter form a system of 1inear differential equations having the form (2.5)

2hg = —phy — (@ — @) Ay — (r — )Ry, 22 =pho+ (r + ) Ay — (g 1+ ¢°) A5

20" = (q— ¢V Ao+ Phg — (r+ 1) Ay, 245 = (r — 1) ho+ (g + ¢°) Ay — Pha

The classical Rodrigues-Hamilton equations (for a fixed base) are obtalned
from (2.5) by letting ¢°= r°= O in them.

3. Let us consider here the kinematics of the motion of the sensing ele-
ment (gyrosphere) of a two-rotor horizontal gyrocompass [2].

Let 0x°y°z° be a trihedron with right-handed coordinates, oriented, as
in the gyropendulum case, along the velocity vector of the poilnt of suspen-
sion.

Let us also introduce a moving trihedron Oxyz connected to the gyro-
sphere and obtained from 0x°3°x° by & sequence of three finite rotations
through the angles a , 8 , v .

In this case the expressions for the direction cosines will have the form
ay = cos 0, cosy —sinasinBsiny, aiz=sinacosy+ cosasinBsiny
413 = — cOSB COSY, @m=—sinacosP, am=cosacosB, axm=sinf (3.1)
as — cososin Y+ sinasinBcosy, asp=sinasiny-—cosasinBcosy, a3 ==COS Bcosy
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Comparing (1.1) (these formulas, of course, retain their own structure)
with (3.1), we can convince ourselves of the validity of Formulas 3.2)

2 (Mohs — Aihe) . 2 (hohs — Mahs)
tag = 7\.02+;»223~—7»;22—7\,12’ sin 8 = 2 (Ao 4 Azhg), tany = A I Ae? — A2 — Agd

It is somewhat complicated to establish the exxpressions for the Rodrigues-~
Hamilton parameters in terms of functions of the angles o , 8 , v . The
transfer from the system x°1°z° to the system xyr 18 determined by the
three successive finite rotations -

0, = 2e tanl)y o, 0y = 2eptan/y B, 03 = 2egtanl/p v (3.3)

Here, the unlt vector e, gives the directlon of the axes around which
the sequence of rotations through the angles o , 8 , vy are accomplished.

In order to obtailn expressions for 1\, in.terms of functlions of the angles
o s B s Y, we can apply to {3.3) twice the procedure of adding on finite
rotations. However, it is simpler to make use of the Lur'e theorem on the
transposition of finite rotations. According to this theorem the sequence
of rotations 6, and 0, 1s equivalent to the series

6 = 6; = 2e;tnl/; 3, 0y = 2e1’'anlr (3.4)
Here e,’ is the unit vector to which e, transfers under rotation ;.

Therefore, denoting by A,’ the Rodrigues parameters corresponding to the
resultant rotation 49,, and by 4, and (8 = 0, 1, 2, 3) the parameters
of the component rota}.ions, according to tf\e theorem on transposed rotations
we set

vo=1c0s12B, vi=sinlsB, Vvi=v3=0 (3.5)
mo=cosljza, p1 = o =0, Ws=sinifsa

For A,’ we have Formulas

3 3 8
Ao” == Voo — 2 Vil gy Mg’ = Vghio - Hgvo +- 2 2 ErtslhrVi (3.6)
8=]1 . r=1 t=}
Here &rz 18 the Levi-Civita symbol [3]. Hence it follows that
Ao’ =cosl/za coslfy B, M ==coslasinl/B
Ae’ = sinl/zasinl/y B A3’ =sinYza cos1/yB (3.7)
Further, we should consider the sequence of rotations 4, and A, by again
making use of the theorem of transposed rotations.
In this case we should right away set
vo==coslyy, v =0, wvy=sinlly, ;=0 p, =4, (3.8)

Denoting the desired Rodrigues-Hamilton parameters by 1, and again using
the formulas of structure (3.6), we obtain
ho=cosl/gacostfyBcost/yy —sint/zasin?/yBsint/yy
Ay =cosifyasinl/yBcosl/sy —sini/gacos/yBsinlfey (3.9)
Ay =coszacosfaBsinl/yy 4 sint/rasint/aBcoslat
As=sinljpacost/aBcost/s Y 4 costfaatsinlfaBsinl/ay
The generallized Rodrigues-Hamilton equations for the horizontal gyrocom-
pass may be obtained from (2.5) by setting p = O in them [2]1, We have
2k’ =—(9—9°)ha—(r —r°) hs, 20" =(r +r°)ha— (g + %) As (3.10)
2h" = (g —¢°) Ao —(r +70) Ay, ' =(r—rYho+(@+ 1M a
Here
g=4qan-+(r"+a)as+1, r=q°g 4 (r° + a’) aga + B'siny (3.11)
and, further, the g,, are expressed by Formulas (3.1).

4, The application of the Rodrigues-Hamilton parameters to the dynamic
problems of the applied theory of gyroscopes, of course, meets with great
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difficulties in comparison with the purely kinematic aspects presented in
Sections 1 to 3.

However, here too it 1s posslible in certaln cases to simplify the analytic
aspects of the problem by means of a transfer from the Euler-Résal angles to
the R drlgues-Hamllton parameters, by which we can arrive at linear differ-
eriltial equations without a preliminary linearization ¢f the original equa-
tions.

As an example which wlll clarify this concept, let us consider the equa-
tions of precessional motion of a single-rotor gyropendulum set on a fixed
base, Relative to the Résal axes these equations have the form (1]

Hq = M_, — Hp =M, (4.1)
where, taking (2.1) into account, we should assume
p=ocosB, ¢q=p, M,=—Plsina, M,=—Plcosasin B (4.2)

Here, as before, o and p are the angles of rotation of the outer and
inner rings, pI 1is the pendulum moment, F 18 the natural kinetic moment
of the gyroscope, which we shall take to be constant. It i1s well-known [1]
that the structure of Equations (4.1) is preserved also for an arbitrary tri-
hedron Ox*y*z* with origin at the center of the gimbals, where the z*-axis
coincldes with the z-axis of the thrilhedron Oxyz .

Let us introduce the trihedron 0Ox¥*y*z* connected to the rotor, formed by
a rotation of the trihedron (Oxyz around the z-axls through an angle vy
The position of the rotor will thus be determined by the angles o , B , ¥

The Rodrigues-Hamilton parameters corresponding to the sequence of three
rotations through the angles o , B , v , transferring the system 0x°y°2°
to Ox*y*z*, are determined by Formulas

ho=cosl/yycoslsacost/e3 —sinl/zysinl/zasini/y B
M == cosl/aysinl/sacosl/eB -+ sinl/zy coslfpasinl/y B (4.3)
Az = cosl/y v cosfpasinl/s B —sinl/y ysinl/gacosl/z
Ag=sinlarcosljsacosl/zB -} cosl/aysinl/aasinl/z B

obtained analogously as in Section 3 for the horizontal gyrocompass.

The equations of precessional motion relative to the axes x*y*z* have
the form 4.4
Hq*zMxt, “"‘IIP*=MU. ( . )
where we should take
p*=pcosy+gsiny, g*=—psiny—+gcosy
M= My cosy + Mysiny, M, =—M,siny+ McosY (4:5)

Equations (4.4%) in the variables ), determined from Formulas (4.3) have

the form
Aora® — Mo’ + AgAe — Azhs” 4+ @ (Aihg — Aohe) = 0 ((1) _ gl_) (4.6)
7\,07\.2' _— 127\,0. + }\,17\,3. — 7\.37\,1. '}“ (0] (7\.0;»1 + )\427»3) =0 H
Equations (2.4) should be combined with Equations (4.6). The fourth equa-
tion can be obtained with the help of the integral of the energy, which in
the given case has the form [5]

He?
56 + PlcosacosB="m (4.7)

where (¢ 4is the polar moment of inertia of the rotor, while the quantity
H=Cr*=C(y +asinB)=rs (4.8)

determines the cyclic integral in the steady-state rotation of the gyroscope.
From {4%.7) and (4.8) follows the validity of the expression

¥ 4 % cOS & CO8 B = h (h B const) (49)

In the variables A, Equation (4.9) will be
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Aohs" — Aeho” + Ai'Ae — Ag'As - Vo> (Ro? 4 Aa? — M2 — Ag?) = Yoh (4.10)

Solving Equations (4.6), (2.4) and (4.10) with respect to the derivatives
of the Rodrigues-Hamilton parameters, we obtain four linear differential
equations with constant coefficients, which can be split up into two indepen-
dent systems of the form

2h" = (0 — h) s, 2M" = (@ +h) A2
2As" = — (@ — h) Ao, 2h’ =—(0+hM

Here, by virtue of (4.9), with due regard to the initial conditions we
should set

(4.41)

Pl . . L P
o —h =7 —171(0) — o’ (0)sin 3 (0) ——ITcosa(O)cosB(O) (4.12)

Pl Pl
® 4+ h =5 47 (0) + o (0) sin B (0) + J cosa (0) cos B (0)

Equations (4.11) can be still further simnlified if we pass to the Cayley-
Klein parameters by setting

Ay 4 ihg = uy, A+ ihy = u, (4.13)
Relative to the Cayley-Klein parameters u, and u, we get Equations
= — @ — k) iy,  u = — (0 h) iy i=V=1 (4.14)

Equations (4.11) (or (4.14)) are integrated to gilve the solution of the
problem.

5. 1In linear cases the equations we have obtalned admit of an easy degen-
eration.

For small angles o and gp , &8s ), we can take the expressions G 1)
Ao = €08 Y3y, M = Ya(a cosl/ey -+ B sinl/ay), As = 1/5 (B cosl/ay — asinlfey), As=sinl/sy
Further, from (4.8) by neglecting terms of the second order of smallness,

btai
ve obtain r=19 =49 (0) = const 5.2)

Under these condltions the first two of Equations (4.11) become identities;
from the other two we obtaln equations of the form

o’ ¢os Yoy -+ B sint/py = (PU/H) (B cos /oy — a sin1/aT)

—a’ sin /a1 + B cos Yoy = — (PI/H) (a cos Yoy + B sin 1/ay)
whence ensue the equations of small oscillatlions of a gyroscopic pendulum
Hp = — Pla, Ha' = PIf (5.4
which, of course, are directiy obtainable after a linearization of system (4.1).

In conclusion we note that by virtue of the arbitrariness of the choice
of the system of coordinates (Ox*y*z* with origin at the center of suspension
and with the z*-axls coincldent with the z-axis of the Résal trihedron, the
motion of the system along the coordinate y can be chosen so as to satisfy
the condition n = 0. This clrcumstance simplifies matters still further.

The author sincerely thanks G,D.Bliumin, Ju.K.Zhbanov and D.M.Klimov for
reviewing the paper and for valuable remarks.
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